Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JACS Au ; 2(11): 2548-2560, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36465551

RESUMO

The totality of environmental exposures and lifestyle factors, commonly referred to as the exposome, is poorly understood. Measuring the myriad of chemicals that humans are exposed to is immensely challenging, and identifying disrupted metabolic pathways is even more complex. Here, we present a novel technological approach for the comprehensive, rapid, and integrated analysis of the endogenous human metabolome and the chemical exposome. By combining reverse-phase and hydrophilic interaction liquid chromatography (HILIC) and fast polarity-switching, molecules with highly diverse chemical structures can be analyzed in 15 min with a single analytical run as both column's effluents are combined before analysis. Standard reference materials and authentic standards were evaluated to critically benchmark performance. Highly sensitive median limits of detection (LODs) with 0.04 µM for >140 quantitatively assessed endogenous metabolites and 0.08 ng/mL for the >100 model xenobiotics and human estrogens in solvent were obtained. In matrix, the median LOD values were higher with 0.7 ng/mL (urine) and 0.5 ng/mL (plasma) for exogenous chemicals. To prove the dual-column approach's applicability, real-life urine samples from sub-Saharan Africa (high-exposure scenario) and Europe (low-exposure scenario) were assessed in a targeted and nontargeted manner. Our liquid chromatography high-resolution mass spectrometry (LC-HRMS) approach demonstrates the feasibility of quantitatively and simultaneously assessing the endogenous metabolome and the chemical exposome for the high-throughput measurement of environmental drivers of diseases.

2.
Front Mol Biosci ; 9: 857505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923463

RESUMO

Covering a wide spectrum of molecules is essential for global metabolome assessment. While metabolomics assays are most frequently carried out in microbore LC-MS analysis, reducing the size of the analytical platform has proven its ability to boost sensitivity for specific -omics applications. In this study, we elaborate the impact of LC miniaturization on exploratory small-molecule LC-MS analysis, focusing on chromatographic properties with critical impact on peak picking and statistical analysis. We have assessed a panel of small molecules comprising endogenous metabolites and environmental contaminants covering three flow regimes-analytical, micro-, and nano-flow. Miniaturization to the micro-flow regime yields moderately increased sensitivity as compared to the nano setup, where median sensitivity gains around 80-fold are observed in protein-precipitated blood plasma extract. This gain resulting in higher coverage at low µg/L concentrations is compound dependent. At the same time, the nano-LC-high-resolution mass spectrometry (HRMS) approach reduces the investigated chemical space as a consequence of the trap-and-elute nano-LC platform. Finally, while all three setups show excellent retention time stabilities, rapid gradients jeopardize the peak area repeatability of the nano-LC setup. Micro-LC offers the best compromise between improving signal intensity and metabolome coverage, despite the fact that only incremental gains can be achieved. Hence, we recommend using micro-LC for wide-target small-molecule trace bioanalysis and global metabolomics of abundant samples.

3.
Anal Bioanal Chem ; 414(15): 4359-4368, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34642781

RESUMO

We introduce a new concept of yeast-derived biological matrix reference material for metabolomics research relying on in vivo synthesis of a defined biomass, standardized extraction followed by absolute quantification with isotope dilution. The yeast Pichia pastoris was grown using full control- and online monitoring fed-batch fermentations followed by fast cold methanol quenching and boiling ethanol extraction. Dried extracts served for the quantification campaign. A metabolite panel of the evolutionarily conserved primary metabolome (amino acids, nucleotides, organic acids, and metabolites of the central carbon metabolism) was absolutely quantified by isotope dilution utilizing uniformly labeled 13C-yeast-based internal standards. The study involved two independent laboratories employing complementary mass spectrometry platforms, namely hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Homogeneity, stability tests (on a panel of >70 metabolites over a period of 6 months), and excellent biological repeatability of independent fermentations over a period of 2 years showed the feasibility of producing biological reference materials on demand. The obtained control ranges proved to be fit for purpose as they were either superior or comparable to the established reference materials in the field.


Assuntos
Saccharomyces cerevisiae , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Isótopos/metabolismo , Metaboloma , Metabolômica/métodos , Pichia/química , Espectrometria de Massas em Tandem/métodos
5.
Proc Natl Acad Sci U S A ; 113(45): 12733-12738, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791062

RESUMO

In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics.

6.
Curr Biol ; 22(9): 787-93, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22521784

RESUMO

Oscillating cyclin-dependent kinase 1 (Cdk1) activity is the major regulator of cell-cycle progression, whereas the Aurora B kinase, as part of the chromosome passenger complex (CPC), controls critical aspects of mitosis such as chromosome condensation and biorientation on the spindle. How these kinases mechanistically coordinate their important functions is only partially understood. Here, using budding yeast, we identify a regulatory mechanism by which the Cdk1 kinase Cdc28 directly controls the Aurora kinase Ipl1. We show that Cdk1 phosphorylates Ipl1 on two serine residues in the N-terminal domain, thereby suppressing its association with the microtubule plus-end tracking protein Bim1 until the onset of anaphase. Failure to phosphorylate Ipl1 leads to its premature targeting to the metaphase spindle and results in constitutive Bim1 phosphorylation, which is normally restricted to anaphase. Cells expressing an Ipl1-Sli15 complex that cannot be phosphorylated by Cdk1 display a severe growth defect. Our work shows that Ipl1/Aurora is not only the catalytic subunit of the CPC but also an important regulatory target that allows Cdk1 to coordinate chromosome biorientation with spindle morphogenesis.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Aurora Quinases , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...